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‡ Instituto de Investigaciones Fisicoquı́micas Téoricas y Aplicadas, INIFTA, Facultad de Ciencias
Exactas, Universidad Nacional de La Plata, Sucursal 4, Casilla de Correo 16, 1900 La Plata,
Argentina

Received 26 June 1996

Abstract. We introduce a contact model with evaporation and deposition of particles at rates
p and (1− p), respectively, per occupied lattice site; while the deposition probability on empty
sites depends on the number of occupied nearest-neighbour sites. At large timest this model has
three different phases, separated by two critical points (p1c = 1

2 andp2c = 0.6473± 0.0003).
Such phases are: (i) The growth phase (06 p 6 1

2). Here the mean value of particles per
lattice siten and its fluctuationsw always increase as time increases. However, two different
regimes can be observed, that isn ∼ t andw ∼ t1/2, for 0 6 p < 1

2 ; while just atp1c one has
n ∼ w ∼ t1/2. (ii) The steady-state phase (1

2 < p < p2c), in which n andw reach finite non
trivial (n > 0 andw > 0) values, but both quantities diverge forp → 1/2+ as(p − 1

2)−1. (iii)
The inactive (or vacuum) state (p2c 6 p 6 1), for which n = 0. At p2c the system exhibits
an irreversible phase transition which belongs to the universality class of directed percolation
model, so forp → p−

2c, n ∼ (p2c − p)β2 andw ∼ (p2c − p)β2/2, with β2 ' 0.277. Transitions
between phases are continuous, however, the transition atp1c (p2c) is reversible (irreversible),
respectively.

1. Introduction

Far from equilibrium reaction systems undergoing irreversible phase transitions, generically
classified as ‘interacting particle systems’ [1, 2], is a field that continues to attract great
interest from physical and biological scientists. The occurrence of transitions between an
active stationary state and an inactive absorbing one is the common feature of many systems
which arise in diverse areas such as catalysis (absorbing≡ poisoned) [3, 4], stochastic growth
such as directed percolation (absorbing≡ no-percolating) [5], dynamic evolution of living
societies (absorbing≡ dead) [6], forest fire propagation (absorbing≡ fire extinction) [7],
damage spreading (absorbing≡ frozen) [8], etc. Within this context, the contact process,
earlier proposed by Harris [9] as a model for an epidemic, is the archetype model for the
study of irreversible phase transitions [1, 2].

In the standardone-dimensional contact process [1, 9] each site of lattice can be either
empty or occupied by only one particle (a monolayer) and the evolution of the system is
governed by the following rules. Particles are annihilated at ratep independent of the
state of other sites, and empty sites become occupied at rate1

2 or 1, provided that one
or two nearest-neighbours are occupied, respectively. As there is no spontaneous creation
of particles, for largep the system can become trapped in a state with zero particles (the
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vacuum or absorbing state). For sufficiently smallp the system reaches, at large times, a
steady-state regime with a non-zero average particle density (the active state). At a critical
valuepc the system presents a continuous irreversible phase transition which belongs to the
same universality class of directed percolation model.

On the other hand, the study of interfaces is one of the most active areas in physics
and physical-chemistry (for a review see e.g. [10]). In particular, the structure of a non-
equilibrium interface and the dynamic of its roughening are issues of considerable interest.
The phenomena of wetting [11], the surface structure of diffusion-limited-aggregates
[12], the structure of domain walls in lattice spin models [13], etc, are some examples.
Furthermore, the study of rough interfaces upon thin film growth [14] has lead to the
formulation of many multilayer growth models involving random deposition of particles,
random deposition with surface diffusion, ballistic deposition, etc; see e.g. [15, 16] and for
a recent review see [10].

The aim of this work is to propose and study a generalization of the standard contact
process by allowing the creation of new particles in each occupied lattice site at rate (1−p).
This creation of particles can be thought of as a deposition process in occupied lattice sites.
Then, the sites can be occupied by many particles and a multilayer structure appears. The
time dependence of both the mean value of particles per lattice siten and its fluctuations
w (which characterize the roughness of the interface), are studied for all values ofp. It
is found that the proposed model exhibits a complex and rich critical behaviour. In fact,
it is observed a reversible phase transition between a growing state where the interface
diverges and a stationary state where the interface remains finite. These regimes are studied
analytically and exact results are derived. Furthermore, an irreversible phase transition
between the stationary state and a vacuum absorbing state is also observed. This transition
is studied by means of numerical simulations and belongs to the universality class of directed
percolation.

2. The model and the Monte Carlo simulation

The multilayer contact process (MCP) is a continuous-time Markov process in which at
time t each sitei of a lattice (typically thed-dimensional hypercubic lattice,Zd ), is either
vacant or occupied byni(t) particles.

At each Monte Carlo step one site of the system (for example, sitej ) is randomly
chosen and the following situations may appear: (i) If the chosen site is empty, it is
occupied (nj = 0 → nj = 1) with probability m/q, whereq is the coordination number
of the lattice andm is the number of nearest-neighbour occupied sites. (ii) If the site is
occupied, one particle of the columnj is either eliminated (nj → nj − 1) with probability
p, or one particle is deposited (nj → nj + 1) with probability 1− p.

Since particles can only be created by other particles, the vacuum state is absorbing as
in the standard contact process. However, in contrast to that process, in the MCP multiple
occupancy of lattice sites is allowed, i.e. rule (ii). As it will be shown below, for large
times and depending on the value ofp, either the number of particles in the system diverge
with time, or the system reaches a steady-state regime where the number of particles per
lattice site remains bounded.

Exact results for the MCP are derived for the divergency of the average number of
particles and the interface width. Close to the vacuum state some exact results are also
obtained, but the location of the critical point has to be made by means of a numerical
Monte Carlo approach. For this purpose simulations in one-dimensional lattices of sizeL

are performed, assuming periodic boundary conditions. In the algorithm, after each Monte
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Carlo step the timet is increased by 1/L so that, at each unitary time interval, every site
of the lattice is selected, on average, once.

3. An equation for the density of particles

It is possible to derive a differential equation for the global densityn as a function of time
t , by analysing all possible processes that can take place in a single time stepδt .

The global densityn is obtained averaging over all lattice sites:n(t) = 〈ni(t)〉. Also, let
si(t) be the occupation number of sitei (1 if occupied, 0 otherwise). The mean occupation
number of the lattice is thens(t) = 〈si(t)〉.

Knowing ni(t) it is possible to find an expression for the mean value of the number of
particles in sitei at time t + δt in one dimension,

ni(t + δt) = ni

(
1 − 1

L

)
+ [(ni + 1)(1 − p) + (ni − 1)p]si

1

L

+(si−1/2 + si+1/2)(1 − si)
1

L
(1)

where 1/L is the probability of choosing sitei in a Monte Carlo step and is equal to the
time stepδt . Notice that the time dependence inni andsi has been dropped for simplicity.
equation (1) accounts for the following possibilities: (a) the sitei is not selected (first
term of the right-hand side), (b) the sitei is occupied and the process of deposition or
evaporation takes place (second term), and (c) the sitei is empty and becomes occupied
due to the contact process of occupied neighbouring sites.

Averaging equation (1) over lattice sites, it follows:
dn

dt
= (1 − 2p)s + 1

2A (2)

whereA = 〈si−1(1 − si) + (1 − si)si+1〉 is the density of pairs of sites that are occupied-
empty or empty-occupied. The first term on the right-hand side of equation (2) represents
the changes inn due to evaporation of particles with probabilityp (rate of change equal to
−ps) and deposition of particles in occupied sites with probability 1− p (rate of change
(1 − p)s). This term is positive or negative whetherp is smaller or greater than12. The
second term is zero or positive and represents the lateral growth in empty sites due to
occupied neighbours. Equation (2) can be easily extended tod dimensions changing the
definition ofA: A/2 = 〈(1−si)

∑
i ′ si ′ 〉/q, where

∑
i ′ si ′ is the sum over nearest neighbours

of site i, and q is the coordination number. With this change, all the analytical results
presented in sections 4–6 hold.

4. Casep < p1c = 1
2

For p < 1
2, from equation (2) it follows that dn/dt > 0 for all time. The densityn always

grows and after a certain time there are no more empty sites. For large enough times,s = 1,
A = 0, and dn/dt = 1 − 2p, so,

n = constant+ (1 − 2p)t for large t . (3)

The system is reduced to a random evaporation–deposition process with no lateral growth.
In figure 1 the prediction of equation (3) is confirmed via numerical simulations. Forp = 0
the random deposition model [15] is recovered. Since forp < 1

2 and large times,A = 0,
there are no correlations between the columns as in the case of a random deposition, and

then, the fluctuationsw =
√

〈n2
i 〉 − 〈ni〉2 grow ast1/2.
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Figure 1. Densityn againstt in log–log scales forp < 1
2 . The points correspond to numerical

simulations and the lines correspond to equation (3) with constant= 0. From top to bottom:
p = 0.1 (◦ ), p = 0.2 (• ), p = 0.3 (�), andp = 0.4 (�). The numerical results of this figure
and those shown in figure 3 were obtained using lattices of lengthL = 104 and starting with
each site of the lattice occupied by one particle with probability1

2 .

Figure 2. Diagram of the number of particlesni in a portion of the lattice in the casep = 1
2 .

When a fluctuation reaches the bottom of the diagram, a particle can enter the system due to
the lateral growth process.

5. Casep = p1c = 1
2

In this case, from equation (2) it follows,

dn

dt
= 1

2
A for p = p1c = 1

2 (4)

this equation indicates thatn will always grow, or will be a constant ifA were 0. Let us
suppose that the lattice is completely occupied (with a given densityni = n > 1 ∀i), so that
A = 0. Due to the evaporation with probabilityp = 1

2 and the deposition with probability
1 − p = 1

2, every site behaves as a random walk, up or down with equal probabilities.
In this process, fluctuationsw grow ast1/2. There will be a time for which a fluctuation
reaches the bottom (see figure 2), and an empty site is created. The empty site is surrounded
by occupied sites, and is occupied in average with probability 1 in the unit interval of time
because of the lateral grow process. So, when a fluctuation produces an empty site, one
hasA > 0, andn grows (see equation (4)). Of course, fluctuations of the order ofn are
necessary in order to produce empty sites. The densityn (the mean value of the columns in
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figure 2) grows if the fluctuations also grow. Since the fluctuations grow ast1/2, it follows
that n ∼ t1/2. On the other hand, one can obtain this behaviour working in the continuous
limit. The fact that when the fluctuation reaches the bottom the empty site is occupied,
corresponds to a random walk with reflecting boundary conditions at the bottom. The
probability density of having a column of heighty at timet is P(y, t) and the corresponding
equation is∂P/∂t = D ∂2P/∂y2, with the diffusion constantD = 1

2 in the present case.
Then, imposing thatP(y, 0) = δ(y), it follows that P(y, t) = exp(−y2/2t)/(πt/2)1/2.
Assuming that the space average is equal to the average in configurations, one obtains that
n = 〈ni〉 = ∫ ∞

0 yP (y, t) dy. Then,

n =
√

2

π
t. (5)

In the same way, one calculates〈n2
i 〉 to find the fluctuation

w =
√(

1 − 2

π

)
t . (6)

For other initial conditions, equations (5) and (6) hold asymptotically for large times. From
equations (4) and (5),

A =
√

2

πt
. (7)

In the discrete case of our model, the previous results hold also for large times. Figure 3
shows plots ofn, w, andA as functions of time in log–log scales. The numerical simulations
confirm the mentioned results.

Figure 3. Plot of numerical results ofn (�), w (◦ ) andA (�) as functions of timet in log–log
scales forp = 1

2 . The upper, middle, and lower straight lines correspond to equations (5)–(7),
respectively.
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6. Casep > p1c = 1
2

In this case the evaporation rate is greater than the deposition rate, so the first term in
equation (2) is less than or equal to zero. The second term, representing the lateral growth, is
zero or positive. A steady state is reached when both processes are balanced, so dn/dt = 0.
For p > 1

2 andp lower than a critical probabilityp2c, the densityn is greater than zero in
the steady state. Forp > p2c, n, s andA are equal to zero.

It is possible to find relations betweenn, s andA in the steady state. From equation (2)
it follows,

s = A

4(p − 1
2)

. (8)

Let uj be the density of sites withj particles. Then, a set of equations foruj can be
derived following the procedure used with equation (1),

du0

dt
= pu1 − A

2
du1

dt
= −u1 + pu2 + A

2
du2

dt
= (1 − p)u1 − u2 + pu3

...

duj

dt
= (1 − p)uj−1 − uj + puj+1.

(9)

In the steady state the time derivatives are equal to zero in equation (9); so a system of
linear equations is obtained. It can be proved by induction that the solution of the system
is

uj = A

2p

(
1

p
− 1

)j−1

for j > 1. (10)

The values ofuj are probabilities. Assuming that the space average is equal to the average
in configurations, one hasn = 〈ni〉 = ∑∞

j=1 juj , so

n = sp

2(p − 1
2)

(11)

where equation (8) has been used to relateA ands. From the probabilitiesuj it is possible
to calculate the second-order momentum:〈n2

i 〉 = ∑∞
j=1 j2uj . Now, the mean value of the

fluctuations,w2 = 〈n2
i 〉 − 〈ni〉2, is obtained giving

w =
√

sp(1 − sp)

2(p − 1
2)

. (12)

For p → p+
1c there are very few empty sites. So, as it can be observed in figure 4, one

hass → 1 for p → p+
1c. Then, in this limit one has, from equations (11) and (12), that

n ' 1

4(p − p1c)
w ' 1

4(p − p1c)
for p → p+

1c, (p1c = 1
2). (13)

In figure 5 the behaviour of equation (13) is compared with numerical simulations and the
agreement observed is excellent.
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Figure 4. The mean occupation numbers against the probabilityp in the steady state regime.
The numerical results of this figure and those shown in figure 5 were obtained at timet = 5×104

and using lattices of lengthL = 104.

So, for p 6 p1c the MCP exhibits a growing phase where both the average global
density and the interface roughness diverges with time, however forp > p1c those quantities
remain bounded. Notice that this transition isreversible in contrast to the transition into
the absorbing state which isirreversible.

For p → p−
2c, i.e. close to the irreversible transition into the vacuum state,n can be

taken as the order parameter, so one expects thatn ∼ (p2c − p)β2, whereβ2 is the order
parameter critical exponent. From equations (11) and (12),

s ∼ (p2c − p)β2 w ∼ (p2c − p)β2/2 for p → p−
2c. (14)

For p > p2c, as stated before,n, s, A andw are equal to zero.

7. Analysis of the irreversible transition to the vacuum state

As discussed above, just atp2c the system exhibits a continuous irreversible phase transition
from the active stationary state to an inactive vacuum state. The precise location of the
critical point as well as the evaluation of relevant critical exponents cannot be achieved
using the analytic solution developed in the previous sections. This task can be done
by mean of computer simulations. However, due to fluctuations of the stochastic system
close to criticality, standard approaches are not useful because the system can irreversibly
be trapped by the vacuum state. This shortcoming can be avoided performing dynamic
epidemic analysis introduced by Grassberger and de la Torre [17]. For this purpose, one
generates a lattice completely empty except for a nearest-neighbour pair of occupied sites
at the centre of the lattice, i.e. a configuration very close to the vacuum state. Starting from
this configuration a large number of independent runs are performed for different values of
p close to criticality. The measured quantities are: (i) the survival probabilityP(t), that
is, the probability that the lattice has not entered in the vacuum state after timet ; (ii) the
average number of occupied sitesN(t); and (iii) the average mean square distance,R2(t),
over which the occupied sites had spread. Results are not affected by finite size artefacts
since lattices are taken large enough such as the epidemic never reaches the edges. At the
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Figure 5. Numerical results of (a) n−1 and (b) w−1 against the probabilityp in the steady state
regime. In a region nearp = 1

2 the behaviour is well represented by the lines which correspond
to equation (13).

critical point and for large values oft , the following scaling ansatz should hold:

P(t) ∝ t−δ (15)

N(t) ∝ tη (16)

R2(t) ∝ t z. (17)

Thus, whenp = p2c, log–log plots ofP(t), N(t) andR2(t) will asymptotically show a
straight line behaviour, while off-critical points will exhibit curvature (see figure 6). With
the aid of these plots the critical point is located atp2c = 0.6473± 0.0003 and from the
slopes of the plots the estimates for the critical exponents are

δ = 0.1605± 0.0005 η = 0.3083± 0.0005 z = 1.264± 0.005.

These figures are in excellent agreement with the values obtained by mean of computer
simulations for the standard contact process, i.e.

δ = 0.161± 0.003 η = 0.305± 0.005 z = 1.257± 0.005
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Figure 6. Log–log plots of (a) the number of occuppied sitesN(t); (b) the survival probability
P(t); and (c) the average square distance of spreadingR2(t) versus timet , obtained close to
criticality. Upper curves:p = 0.6470 (supercritical), medium curves:p = 0.6473 (critical)
and lower curvesp = 0.6474 (subcritical). Averages are taken over 105 different initial
configurations.

as well as with the exponents corresponding to directed percolation in(1 + 1) dimensions,

δ = 0.160 η = 0.308 z = 1.265.

It should be noted that the dynamic exponents are not fully independent since the scaling
relation1 = dz − 2η − 4δ = 0 is expected to hold [17]. Using the obtained exponents one
obtains1 = 0.005, which in fact shows the validity of the scaling relationship.

After determining accurately the critical point, one can gain further insight of the critical



440 M Hoyuelos et al

Figure 6. (Continued)

behaviour of the model performing epidemic analysis within the subcritical (vacuum) state
where the following scaling law should hold [17],

N(t) ∼ tη9(|p − pc|t1/ν‖) (18)

whereν‖ is the correlation length exponent in the so-called time-direction. In the vacuum
state the correlations are short-ranged and one therefore expectsN(t) to decay exponentially.
This can only happen if for1p = p −pc → 0 andt → ∞, the scaling function9 behaves
as

9(y) ∝ y−ην‖ exp(−kyν‖) (19)

wherek is a constant. Therefore, using equations (18) and (19) it follows

N(t) ∼ (1p)−ην‖ exp[−k(1p)ν‖ t ]. (20)

From equation (20) it follows that in the vacuum stateN(t) should decay exponentially
and that the decay constantλ, governing the long-time behaviour is proportional to(1p)ν‖ .
Figure 7(a) shows that in plots of lnN(t) versust one can see asymptotically a straight line
behaviour with slopeλ. In fact, this statement is confirmed in figure 7(b) where a log–log
plot of λ versus1p gives a straight line and from the slope one can evaluate the exponent
ν‖ ∼= 1.728±0.0052, in agreement with the accepted value for directed percolation in(1+1)

dimensions, i.e.ν‖ ∼= 1.733 [18].
Furthermore, using the scaling relationship [17]β = ν‖δ, one can obtain an estimation

of the order parameter critical exponent which givesβ2 = 0.2773 in agreement with the best
available estimated for directed percolation obtained by series analysis, i.e.β = 0.2763(6)

(where the error bars account forβ values determined using different lattices and for bond
and site directed percolation) [19]. So, according to equation (14), the fluctuation of the
interface vanishes with exponentβ2/2.
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Figure 7. (a) ln-lineal plots of the number of occupied sitesN(t) versus timet , obtained
within the subcritical regime for different values ofp. Upper curvep = 0.6513, medium curve
p = 0.6623 and lower curvep = 0.7250. The critical probability isp2c = 0.6473. Averages are
taken over 106 different initial configurations. (b) Log–log plots ofλ versus1p. The straight
line has slopeν‖ = 1.728.

8. Conclusions

A multilayer contact model defined in section 2 is introduced and studied by means of
analytical and numerical approaches in one dimension. The evolution of the system as a
function of timet depends on a free parameterp, which governs the creation (deposition)
and annihilation (evaporation) of a single particle (at ratep and (1− p), respectively) in
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each occupied site. Due to the deposition mechanism on already occupied sites multilayer
structures can appear, in contrast to standard contact process.

By means of analytical results and Monte Carlo simulations it is found that in the
asymptotic time regime the model exhibits a rich critical behaviour with three different
phases:

(i) The growing phase for 06 p 6 p1c = 1
2. Here the mean value of particles per lattice

site n and its fluctuationsw diverge with time according ton ∼ (1 − 2p)t andw ∼ t1/2;
for 0 6 p < 1

2. This behaviour corresponds to a random deposition model with an effective
rate of deposition (1− 2p). However, just atp1c, n ∼ w ∼ t1/2. These results, obtained
analytically have been confirmed by Monte Carlo simulations.

(ii) The steady-state phase (p1c < p < p2c), in which n and w reach finite non-zero
values. Forp → p+

1c, n andw diverge as(p − 1
2)−1; while for p → p−

2c, n andw vanish
as∼ (p2c − p)β2 and∼ (p2c − p)β2/2, respectively, whereβ2 is the order parameter critical
exponent of the universality class of directed percolation.

(iii) The inactive (or vacuum) state (p2c < p 6 1), for whichn = w = 0.
The transition between the growing phase and the stationary one is continuous and

reversible. In contrast, the transition between the stationary phase and the absorbing state
is irreversible. It is also shown, by means of an epidemic spreading analysis that the
continuous irreversible phase transition atp2c belongs to the same universality class as
directed percolation.

As a final remark, let us comment that the present model depends on a single parameter
p, which corresponds to the evaporation rate of the standard contact process. The deposition
probability is 1− p. One can generalize the present model introducing an additional
independent paramenter, the deposition probabilityq. Then, the probability of no change in
the number of particles is 1− p − q. In the (p, q) plane, this new model is defined within
the triangle given byp > 0, q > 0, andp + q 6 1. The linesq = 0 andq = 1− p in this
triangle correspond to the standard contact process and to the model defined in section 2,
respectively. In this generalization, equation (2) changes to dn/dt = (q − p)s + A/2 (for a
one dimensional system). Then, forq > p one obtainsn = constant+ (q − p)t , for large
t (n ∼ t andw ∼ t1/2, see equation (3)); andp1c(q) = q > 0 is a critical line between the
growth phase and the steady-state regime (n ∼ w ∼ t1/2, see equation (4)). In the region
p > q a critical linep2c(q) appears, which corresponds to an irreversible transition between
stationary and vacuum states. This transition belongs to the universality class of directed
percolation.
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